Locally conformally flat manifolds with constant scalar curvature
Author(s) -
Huiya He,
Haizhong Li
Publication year - 2018
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/14148
Subject(s) - scalar curvature , constant (computer programming) , curvature , constant curvature , geometry , mathematics , mathematical analysis , sectional curvature , physics , computer science , programming language
Let ( M n , g ) (M^n,g) be an n n -dimensional ( n ≥ 4 ) (n\geq 4) compact locally conformally flat Riemannian manifold with constant scalar curvature and constant squared norm of Ricci curvature. Applying the moving frame method, we prove that such a Riemannian manifold does not exist if its Ricci curvature tensor has three distinct eigenvalues.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom