Operator Lipschitz estimates in the unitary setting
Author(s) -
Peter Ayre,
Michael Cowling,
Fedor Sukochev
Publication year - 2015
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/12833
Subject(s) - unitary state , lipschitz continuity , operator (biology) , mathematics , unitary operator , lipschitz domain , shift operator , multiplication operator , pure mathematics , algebra over a field , compact operator , computer science , hilbert space , chemistry , extension (predicate logic) , political science , biochemistry , repressor , transcription factor , law , gene , programming language
We develop a Lipschitz estimate for unitary operators. More specifically, we show that for each p ∈ ( 1 , ∞ ) p\in (1,\infty ) there exists a constant d p d_p such that ‖ f ( U ) − f ( V ) ‖ p ≤ d p ‖ U − V ‖ p \left \Vert f(U) - f(V)\right \Vert _p \leq d_p \left \Vert U - V\right \Vert _p for all Lipschitz functions f : T → C f: \mathbb {T} \to \mathbb {C} and unitary operators U U and V V .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom