
Electrospinning Nanofiber-Reinforced Aerogels for the Treatment of Bone Defects
Author(s) -
Yishan Zhang,
Chengcheng Yin,
Gu Cheng,
Xiangyu Huang,
Kai Li,
Gu Cheng,
Zubing Li
Publication year - 2020
Publication title -
advances in wound care (new rochelle, n.y. print)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 24
eISSN - 2162-1934
pISSN - 2162-1918
DOI - 10.1089/wound.2018.0879
Subject(s) - nanofiber , materials science , electrospinning , aerogel , compressive strength , scaffold , scanning electron microscope , chemical engineering , fourier transform infrared spectroscopy , x ray photoelectron spectroscopy , composite material , biomedical engineering , polymer , medicine , engineering
Objective: Application of aerogels in bone tissue engineering is an emerging field, while the reports of electrospinning nanofiber-reinforced aerogels are limited. This research aimed at fabricating the nanofiber-reinforced aerogels and evaluating their physiochemical and biological properties. Approach: The chitosan (CS) aerogels incorporated with cellulose acetate (CA) and poly (ɛ-caprolactone) (PCL) nanofibers were fabricated via ball milling and freeze-drying techniques. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectrum, X-ray photoelectron spectroscopy (XPS), compressive experiment, and in vitro experiment were conducted to assess their physiochemical properties and biological behavior. Results: The SEM examination showed that satisfying morphology was attained in the CA/PCL/CS aerogels with incorporation of CA/PCL nanofibers and CS solution. The results of FT-IR and XPS indicated the perfect incorporation of CA, PCL, and CS. A compressive experiment confirmed that the CA/PCL/CS aerogels enhanced the compressive modulus of the pure CS aerogel. For in vitro experiment, the CA/PCL/CS composite scaffolds were proven to possess better cytocompatibility compared with the pure CS. Also, cells on the CA/PCL/CS showed well-extended morphology and could infiltrate into a porous scaffold. Furthermore, confocal experiment revealed that the CA/PCL/CS could also promote the osteogenic differentiation of MC3T3-E1 cells. Innovation: This study fabricated the nanofiber-reinforced aerogels mainly to optimize the cell/material interaction of the pure CS scaffold. Conclusion: The CA/PCL nanofibers not only improved the mechanical property of the CS aerogel to some extent but also facilitated cell adhesion and osteogenic differentiation. Thus, it could be considered a promising candidate for bone tissue engineering.