z-logo
open-access-imgOpen Access
Human Pluripotent Stem Cell-Derived Extracellular Vesicles: Characteristics and Applications
Author(s) -
Richard Jeske,
Julie Bejoy,
Mark Marzano,
Yan Li
Publication year - 2020
Publication title -
tissue engineering. part b, reviews/tissue engineering. part b, reviews.
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.579
H-Index - 91
eISSN - 1937-3376
pISSN - 1937-3368
DOI - 10.1089/ten.teb.2019.0252
Subject(s) - microvesicles , induced pluripotent stem cell , microbiology and biotechnology , stem cell , biology , exosome , extracellular vesicle , cell , endosome , embryonic stem cell , microrna , intracellular , biochemistry , gene
Extracellular vesicles (EVs), including exosomes and microvesicles, are found to play an important role in various biological processes and maintaining tissue homeostasis. Because of the protective effects, stem cell-derived EVs can be used to reduce oxidative stress and apoptosis in the recipient cells. In addition, EVs/exosomes have been used as directional communication tools between stem cells and parenchymal cells, giving them the ability to serve as biomarkers. Likewise, altered EVs/exosomes can be utilized for drug delivery by loading with proteins, small interfering RNAs, and viral vectors, in particular, because EVs/exosomes are able to cross the blood-brain barrier. In this review article, the properties of human induced pluripotent stem cell (iPSC)-derived EVs are discussed. The biogenesis, that is, how EVs originate in the endosomal compartment or from the cell layer of microvesicles, EV composition, the available methods of purification, and characterizations of EVs/exosomes are summarized. In particular, EVs/exosomes derived from iPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. Impact statement In this review, we summarized the work related to extracellular vesicles (EVs) derived from human pluripotent stem cells (hPSCs). In particular, EVs/exosomes derived from hPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. The results highlight the important role of cell-cell interactions in neural cellular phenotype and neurodegeneration. The findings reported in this article are significant for pluripotent stem cell-derived cell-free products toward applications in stem cell-based therapies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here