Open Access
Tuning Trophoblast Motility in a Gelatin Hydrogel via Soluble Cues from the Maternal–Fetal Interface
Author(s) -
Samantha G. Zambuto,
Kathryn B. H. Clancy,
Brendan A.C. Harley
Publication year - 2021
Publication title -
tissue engineering. part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.964
H-Index - 111
eISSN - 1937-335X
pISSN - 1937-3341
DOI - 10.1089/ten.tea.2020.0097
Subject(s) - trophoblast , motility , endometrium , blastocyst , microbiology and biotechnology , biology , epidermal growth factor , decidua , andrology , fetus , embryo , endocrinology , pregnancy , cell culture , embryogenesis , medicine , placenta , genetics
Trophoblast cells play multiple critical roles in pregnancy, notably modulating blastocyst attachment to the endometrium as well as invading into and actively remodeling the endometrium to facilitate biotransport needs of the growing embryo. Despite the importance of trophoblast invasion for processes essential at early stages of pregnancy, much remains unknown regarding the balance of signaling molecules that may influence trophoblast invasion into the endometrium. The goal of this study was to use three-dimensional trophoblast spheroid motility assays to examine the effect of cues from the maternal-fetal interface on trophoblast motility. We report use of a methacrylamide-functionalized gelatin hydrogel to support quantitative analysis of trophoblast outgrowth area and cell viability. We show that this multidimensional model of trophoblast motility can resolve quantifiable differences in outgrowth area and viability in the presence of a known invasion promoter, epidermal growth factor, and a known invasion inhibitor, transforming growth factor β1. We then investigate the sensitivity of trophoblast motility to cortisol, a hormone associated with exogenous stressors. Together, this approach provides a toolset to investigate the coordinated action of physiological and pathophysiological processes on early stages of trophoblast invasion.