z-logo
open-access-imgOpen Access
Neuropathological and Motor Impairments after Incomplete Cervical Spinal Cord Injury in Pigs
Author(s) -
Patricia Del Cerro,
Andrés Barriga-Martín,
Hugo Vara,
Luis María Romero-Muñoz,
Ángel Rodríguez-De-Lope,
Jorge E. CollazosCastro
Publication year - 2021
Publication title -
journal of neurotrauma
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.653
H-Index - 149
eISSN - 1557-9042
pISSN - 0897-7151
DOI - 10.1089/neu.2020.7587
Subject(s) - spinal cord , spinal cord injury , medicine , neuroscience , physical medicine and rehabilitation , psychology
Humans, primates, and rodents with cervical spinal cord injury (SCI) show permanent sensorimotor dysfunction of the upper/forelimb as consequence of axonal damage and local neuronal death. This work aimed at characterizing a model of cervical SCI in domestic pigs in which hemisection with excision of 1 cm of spinal cord was performed to reproduce the loss of neural tissue observed in human neuropathology. Posture and motor control were assessed over 3 months by scales and kinematics of treadmill locomotion. Histological measurements included lesion length, atrophy of the adjacent spinal cord segments, and neuronal death. In some animals, the retrograde neural tracer aminostilbamidine was injected in segments caudal to the lesion to visualize propriospinal projection neurons. Neuronal loss extended for 4-6 mm from the lesion borders and was more severe in the ipsilateral, caudal spinal cord stump. Axonal Wallerian degeneration was observed caudally and rostrally, associated with marked atrophy of the white matter in the spinal cord segments adjacent to the lesion. The pigs showed chronic monoplegia or severe monoparesis of the foreleg ipsilateral to the lesion, whereas the trunk and the other legs had postural and motor impairments that substantially improved during the first month post-lesion. Adaptations of the walking cycle such as those reported for rats and humans ameliorated the negative impact of focal neurological deficits on locomotor performance. These results provide a baseline of behavior and histology in a porcine model of cervical spinal cord hemisection that can be used for translational research in SCI therapeutics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here