Open Access
Traumatic Optic Nerve Injury Elevates Plasma Biomarkers of Traumatic Brain Injury in a Porcine Model
Author(s) -
Gregory T. Bramblett,
Jason N. Harris,
Laura Scott,
Andrew Holt
Publication year - 2021
Publication title -
journal of neurotrauma
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.653
H-Index - 149
eISSN - 1557-9042
pISSN - 0897-7151
DOI - 10.1089/neu.2020.7039
Subject(s) - traumatic brain injury , optic nerve , medicine , crush injury , glial fibrillary acidic protein , diffuse axonal injury , pathology , ophthalmology , surgery , immunohistochemistry , psychiatry
A diagnosis of traumatic brain injury (TBI) is typically based on patient medical history, a clinical examination, and imaging tests. Elevated plasma levels of glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1), and neurofilament light chain (NFL) have been observed in numerous studies of TBI patients. It is reasonable to view traumatic optic neuropathy (TON) as a focal form of TBI. The purpose of this study was to assess if circulating GFAP, UCH-L1, and NFL are also elevated in a porcine model of TON. Serum levels of GFAP, UCH-L1, and NFL were measured immediately before optic nerve crush and 1 h post-injury in 10 Yucatan minipigs. Severity of optic nerve crush was confirmed by visual inspection of the optic nerve at time of injury, loss of visual function as measured by flash visual evoked potential (fVEP) at 7 and 14 days, and histological analysis of axonal transport of cholera toxin-β (CT-β) within the optic nerve. Post-crush concentrations of GFAP, UCH-L1, and NFL were all significantly elevated compared with pre-crush concentrations ( p < 0.01, p = 0.01, and p < 0.01, respectively). The largest increase was observed for GFAP with the post-injury median concentration increasing nearly sevenfold. The use of these TBI biomarkers for diagnosing and managing TON may be helpful for non-ophthalmologists in particular in diagnosing this condition. In addition, the potential utility of these biomarkers for diagnosing other optic nerve and/or retinal pathologies should be evaluated.