z-logo
open-access-imgOpen Access
Transcranial Doppler Systolic Flow Index and ICP-Derived Cerebrovascular Reactivity Indices in Traumatic Brain Injury
Author(s) -
Frederick A. Zeiler,
Danilo Cardim,
Joseph E. Donnelly,
David K. Me,
Marek Czosnyka,
Peter Smielewski
Publication year - 2017
Publication title -
journal of neurotrauma
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.653
H-Index - 149
eISSN - 1557-9042
pISSN - 0897-7151
DOI - 10.1089/neu.2017.5364
Subject(s) - transcranial doppler , correlation , cerebral perfusion pressure , cardiology , traumatic brain injury , mean arterial pressure , medicine , intracranial pressure , cerebral blood flow , anesthesia , blood pressure , mathematics , heart rate , geometry , psychiatry
The purpose of our study was to explore relationships between transcranial Doppler (TCD) indices of cerebrovascular reactivity and those derived from intracranial pressure (ICP). Goals included: A) confirming previously described co-variance patterns of TCD/ICP indices, and B) describing thresholds for systolic flow index (Sx; correlation between systolic flow velocity [FVs] and cerebral perfusion pressure [CPP]) associated with outcome. In a retrospective cohort of traumatic brain injury (TBI) patients: with TCD and ICP monitoring, we calculated various continuous indices of cerebrovascular reactivity: A) ICP (pressure reactivity index [PRx]: correlation between ICP and mean arterial pressure [MAP]; PAx: correlation between pulse amplitude of ICP [AMP] and MAP; RAC: correlation between AMP and CPP) and B) TCD (mean flow index [Mx]: correlation between mean flow velocity [FVm] and CPP; Mx_a: correlation between FVm and MAP; Sx: correlation between FVs and CPP; Sx_a: correlation between FVs and MAP; Dx: correlation between diastolic flow velocity [FVd] and CPP; Dx_a: correlation between FVd and MAP). We assessed the relationships via various statistical techniques, including: principal component analysis, agglomerative hierarchal clustering, and k-means cluster analysis (KMCA). We performed sequential χ 2 esting to define thresholds associated with outcome for Sx/Sx_a. Outcome was assessed at 6 months via dichotomized Glasgow Outcome Score (GOS): A) Favorable (GOS 4 or 5) versus Unfavorable (GOS 3 or less), B) Alive versus Dead. We analyzed 410 recordings in 347 patients. All analyses confirmed our previously described co-variance of Sx/Sx_a with ICP-derived indices. Sx displayed thresholds of -0.15 for unfavorable outcome (p < 0.0001) and -0.20 for mortality (p < 0.0001). Sx_a displayed thresholds of +0.05 (p = 0.019) and -0.10 (p = 0.0001) for alive/dead and favorable/unfavorable outcomes. TCD systolic indices are most closely associated with ICP indices. Sx and Sx_a likely provide better approximation of ICP indices, compared with Mx/Mx_a/Dx/Dx_a. Sx provides superior outcome prediction, versus Mx, with defined thresholds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom