Selective Modulation of the Protease Activated Protein C Using Exosite Inhibiting Aptamers
Author(s) -
Nasim Shahidi Hamedani,
Jens Müller,
Fabian Tölle,
Heiko Rühl,
Behnaz Pezeshkpoor,
Kerstin Liphardt,
Johannes Oldenburg,
Günter Mayer,
Bernd Pötzsch
Publication year - 2020
Publication title -
nucleic acid therapeutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.255
H-Index - 67
eISSN - 2159-3345
pISSN - 2159-3337
DOI - 10.1089/nat.2020.0844
Subject(s) - protein c , serine protease , proteases , chemistry , aptamer , zymogen , serpin , protease , biochemistry , microbiology and biotechnology , masp1 , serine , biology , enzyme , gene
Activated protein C (APC) is a serine protease with anticoagulant and cytoprotective activities. Nonanticoagulant APC mutants show beneficial effects as cytoprotective agents. To study, if such biased APC signaling can be achieved by APC-binding ligands, the aptamer technology has been used. A G-quadruplex-containing aptamer, G-NB3, has been selected that binds to the basic exosite of APC with a K D of 0.2 nM and shows no binding to APC-related serine proteases or the zymogen protein C. G-NB3 inhibits the inactivation of activated cofactors V and VIII with IC 50 values of 11.6 and 13.1 nM, respectively, without inhibiting the cytoprotective and anti-inflammatory functions of APC as tested using a staurosporine-induced apoptosis assay and a vascular barrier protection assay. In addition, G-NB3 prolongs the plasma half-life of APC through inhibition of APC-serine protease inhibitor complex formation. These physicochemical and functional characteristics qualify G-NB3 as a promising therapeutic agent usable to enhance the cytoprotective functions of APC without increasing the risk of APC-related hemorrhage.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom