
Partial Rescue of Growth Failure in Growth Hormone (GH)-Deficient Mice by a Single Injection of a Double-Stranded Adeno-Associated Viral Vector Expressing the GH Gene Driven by a Muscle-Specific Regulatory Cassette
Author(s) -
Marco Martari,
Alessia Sagazio,
Ali Mohamadi,
Quynh Nguyen,
Stephen D. Hauschka,
Eun Kim,
Roberto Salvatori
Publication year - 2009
Publication title -
human gene therapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.633
H-Index - 149
eISSN - 1557-7422
pISSN - 1043-0342
DOI - 10.1089/hum.2008.197
Subject(s) - biology , adeno associated virus , medicine , transgene , endocrinology , intramuscular injection , viral vector , virus , skeletal muscle , genetic enhancement , hormone , creatine kinase , vector (molecular biology) , virology , gene , biochemistry , recombinant dna
Growth hormone (GH) deficiency (GHD) causes somatic growth impairment. GH has a short half-life and therefore it must be administered by daily subcutaneous injections. Adeno-associated viral (AAV) vectors have been used to deliver genes to animals, and double-stranded AAV (dsAAV) vectors provide widespread and stable transgene expression. In the present study we tested whether an intramuscular injection of dsAAV vector expressing GH under the control of a muscle creatine kinase regulatory cassette would ensure sufficient systemic GH delivery in conjunction with muscle-specific expression. Virus-injected GHD mice showed a significant (p < 0.05) increase in body length and body weight, without reaching full normalization, and significant (p < 0.05) reduction in absolute and relative visceral fat. Quantitative RT-PCR showed preferential GH expression in skeletal muscles that was confirmed by qualitative fluorescence analysis in mice injected with a similar virus expressing green fluorescent protein. The present study shows that systemic GH delivery to GHD animals is possible via a single intramuscular injection of dsAAV carrying a muscle-specific GH-expressing regulatory cassette.