In Vitro Validation of Transgene Expression in Gene-Edited Pigs Using CRISPR Transcriptional Activators
Author(s) -
Kathryn M. Polkoff,
Jae-Wook Chung,
Sean Simpson,
Katherine Gleason,
Jorge A. Piedrahita
Publication year - 2020
Publication title -
the crispr journal
Language(s) - English
Resource type - Journals
eISSN - 2573-1602
pISSN - 2573-1599
DOI - 10.1089/crispr.2020.0037
Subject(s) - crispr , transgene , gene , biology , gene expression , computational biology , function (biology) , genome editing , regulation of gene expression , in vitro , genetics
The use of CRISPR-Cas and RNA-guided endonucleases has drastically changed research strategies for understanding and exploiting gene function, particularly for the generation of gene-edited animal models. This has resulted in an explosion in the number of gene-edited species, including highly biomedically relevant pig models. However, even with error-free DNA insertion or deletion, edited genes are occasionally not expressed and/or translated as expected. Therefore, there is a need to validate the expression outcomes gene modifications in vitro before investing in the costly generation of a gene-edited animal. Unfortunately, many gene targets are tissue specific and/or not expressed in cultured primary cells, making validation difficult without generating an animal. In this study, using pigs as a proof of concept, we show that CRISPR-dCas9 transcriptional activators can be used to validate functional transgene insertion in nonexpressing easily cultured cells such as fibroblasts. This is a tool that can be used across disciplines and animal species to save time and resources by verifying expected outcomes of gene edits before generating live animals.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom