z-logo
open-access-imgOpen Access
Engineered RNA-Interacting CRISPR Guide RNAs for Genetic Sensing and Diagnostics
Author(s) -
Roberto Galizi,
John N. Duncan,
William Rostain,
Charlotte M Quinn,
Marko Storch,
Manish Kushwaha,
Alfonso Jaramillo
Publication year - 2020
Publication title -
the crispr journal
Language(s) - English
Resource type - Journals
eISSN - 2573-1602
pISSN - 2573-1599
DOI - 10.1089/crispr.2020.0029
Subject(s) - crispr , rna , computational biology , biology , guide rna , crispr interference , genetics , non coding rna , cas9 , gene
CRISPR guide RNAs (gRNAs) can be programmed with relative ease to allow the genetic editing of nearly any DNA or RNA sequence. Here, we propose novel molecular architectures to achieve RNA-dependent modulation of CRISPR activity in response to specific RNA molecules. We designed and tested, in both living Escherichia coli cells and cell-free assays for rapid prototyping, cis -repressed RNA-interacting guide RNA (igRNA) that switch to their active state only upon interaction with small RNA fragments or long RNA transcripts, including pathogen-derived mRNAs of medical relevance such as the human immunodeficiency virus infectivity factor. The proposed CRISPR-igRNAs are fully customizable and easily adaptable to the majority if not all the available CRISPR-Cas variants to modulate a variety of genetic functions in response to specific cellular conditions, providing orthogonal activation and increased specificity. We thereby foresee a large scope of application for therapeutic, diagnostic, and biotech applications in both prokaryotic and eukaryotic systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom