De Novo Clustering of Long-Read Transcriptome Data Using a Greedy, Quality Value-Based Algorithm
Author(s) -
Kristoffer Sahlin,
Paul Medvedev
Publication year - 2020
Publication title -
journal of computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.585
H-Index - 95
eISSN - 1557-8666
pISSN - 1066-5277
DOI - 10.1089/cmb.2019.0299
Subject(s) - cluster analysis , bottleneck , computer science , scalability , nanopore sequencing , data mining , algorithm , greedy algorithm , dna sequencing , biology , machine learning , gene , genetics , database , embedded system
Long-read sequencing of transcripts with Pacific Biosciences (PacBio) Iso-Seq and Oxford Nanopore Technologies has proven to be central to the study of complex isoform landscapes in many organisms. However, current de novo transcript reconstruction algorithms from long-read data are limited, leaving the potential of these technologies unfulfilled. A common bottleneck is the dearth of scalable and accurate algorithms for clustering long reads according to their gene family of origin. To address this challenge, we develop isONclust, a clustering algorithm that is greedy (to scale) and makes use of quality values (to handle variable error rates). We test isONclust on three simulated and five biological data sets, across a breadth of organisms, technologies, and read depths. Our results demonstrate that isONclust is a substantial improvement over previous approaches, both in terms of overall accuracy and/or scalability to large data sets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom