
Immunotherapy for Infarcts: In Vivo Postinfarction Macrophage Modulation Using Intramyocardial Microparticle Delivery of Map4k4 Small Interfering RNA
Author(s) -
Jun Luo,
Matthew S. Weaver,
Timothy P. Fitzgibbons,
Myriam Aouadi,
Michael P. Czech,
Margaret D. Allen
Publication year - 2020
Publication title -
bioresearch open access
Language(s) - English
Resource type - Journals
eISSN - 2164-7860
pISSN - 2164-7844
DOI - 10.1089/biores.2020.0037
Subject(s) - ctgf , small interfering rna , in vivo , cancer research , medicine , tumor necrosis factor alpha , versican , ex vivo , periostin , growth factor , immunology , microbiology and biotechnology , biology , extracellular matrix , transfection , receptor , proteoglycan , genetics , cell culture
The myeloid cells infiltrating the heart early after acute myocardial infarction elaborate a secretome that largely orchestrates subsequent ventricular wall repair. Regulating this innate immune response could be a means to improve infarct healing. To pilot this concept, we utilized (β1,3-d-) glucan-encapsulated small interfering RNA (siRNA)-containing particles (GeRPs), targeting mononuclear phagocytes, delivered to mice as a one-time intramyocardial injection immediately after acute infarction. Findings demonstrated that cardiac macrophages phagocytosed GeRPs in vivo and had little systemic dissemination, thus providing a means to deliver local therapeutics. Acute infarcts were then injected in vivo with phosphate-buffered saline (PBS; vehicle) or GeRPs loaded with siRNA to Map4k4 , and excised hearts were examined at 3 and 7 days by quantitative polymerase chain reaction, flow cytometry, and histology. Compared with infarcted PBS-treated hearts, hearts with intrainfarct injections of siRNA-loaded GeRPs exhibited 69-89% reductions in transcripts for Map4k4 (mitogen-activated protein kinase kinase kinase kinase 4), interleukin (IL)-1β, and tumor necrosis factor α at 3 days. Expression of other factors relevant to matrix remodeling-monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinases, hyaluronan synthases, matricellular proteins, and profibrotic factors transforming growth factor beta (TGF-β), and connective tissue growth factor (CTGF)-were also decreased. Most effects peaked at 3 days, but, in some instances (Map4k4, IL-1β, TGF-β, CTGF, versican, and periostin), suppression persisted to 7 days. Thus, direct intramyocardial GeRP injection could serve as a novel and clinically translatable platform for in vivo RNA delivery to intracardiac macrophages for local and selective immunomodulation of the infarct microenvironment.