
Ultrasensitive System for Electrophysiology of Cancer Cell Populations: A Review
Author(s) -
Paulo R. F. Rocha,
Aya Elghajiji,
David Tosh
Publication year - 2019
Publication title -
bioelectricity
Language(s) - English
Resource type - Journals
eISSN - 2576-3113
pISSN - 2576-3105
DOI - 10.1089/bioe.2019.0020
Subject(s) - neuroscience , electrophysiology , context (archaeology) , extracellular , prostate cancer , cancer cell , biology , glioma , disease , medicine , cancer , cancer research , microbiology and biotechnology , paleontology
Bioelectricity is the electrical activity produced by living organisms. Understanding the role of bioelectricity in a disease context is important as it contributes to both disease diagnosis and therapeutic intervention. Electrophysiology tools work well for neuronal cultures; however, they are limited in their ability to detect the electrical activity of non-neuronal cells, wherein the majority of cancers arise. Electronic structures capable of detecting and modulating signaling, in real-time, in electrically quiescent cells are urgently required. One of the limitations to understanding the role of bioelectricity in cancer is the inability to detect low-level signals. In this study, we review our latest advances in devising bidirectional transducers with large electrode areas and concomitant low impedances. The resulting high sensitivity is demonstrated by the extracellular detection of electrical activity in Rat-C6 glioma and prostate cancer (PC-3) cell populations. By using specific inhibitors, we further demonstrated that the large electrical activity in Rat-C6 glioma populations is acidosis driven. For PC-3 cells, the use of a calcium inhibitor together with the slowly varying nature of the signal suggests that Ca 2+ channels are involved in the cohort electrogenicity.