Open Access
Four-Year Operation of Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments on the JEM Exposed Facility of the International Space Station
Author(s) -
Akihiko Yamagishi,
Hirofumi Hashimoto,
Hajime Yano,
Eiichi Imai,
M. Tabata,
Masumi Higashide,
Kyoko Okudaira
Publication year - 2021
Publication title -
astrobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.234
H-Index - 90
eISSN - 1531-1074
pISSN - 1557-8070
DOI - 10.1089/ast.2020.2430
Subject(s) - micrometeoroid , hypervelocity , international space station , zenith , astrobiology , space debris , environmental science , dosimeter , comet , physics , materials science , radiation , optics , meteorology , astronomy , debris
The Tanpopo experiment was the first Japanese astrobiology mission on board the International Space Station. It included exposure experiments of microbes and organic compounds as well as a capture experiment of hypervelocity impacting microparticles. We deployed three Exposure Panels, each consisting of 20 Exposure Units that contained microbes, organic compounds, an alanine UV dosimeter or an ionizing radiation dosimeter. The three Exposure Panels were situated on the zenith face of the Exposed Experiment Handrail Attachment Mechanism (ExHAM) that was pointing in zenith direction toward space, which was attached on a handrail of the Japanese Experiment Module (Kibo) Exposed Facility (JEM-EF) outside the International Space Station. The three Exposure Panels were one by one retrieved and returned to the ground after approximately 1, 2, and 3 years of exposure to the space environment. Capture Panels, each of which contained one or two blocks of amorphous silica aerogel, were exposed to collect hypervelocity impact microparticles. Possible captured particles may include micrometeoroids, human-made orbital debris, and natural terrestrial particles. Each year, Capture Panels containing from 11 to 12 aerogel blocks were attached to the three faces of the ExHAM (pointing to zenith, ram, and port); they remained in place for about 1 year and were then returned to the laboratory. This process was repeated three times, in total, during 2015-2018. Additional exposure of a Capture Panel facing ram was conducted between 2018 and 2019. Once the aerogel blocks were returned to the laboratory, they were encapsulated in dedicated transparent plastic cases and optically inspected by a specially designed microscopic system. Once located and recorded, hypervelocity impact signatures were excavated one by one and distributed for further detailed analyses. The apparatus, operation, and environmental factors of all the Tanpopo experiments are summarized in this article.