z-logo
open-access-imgOpen Access
ExoMars Mars Organic Molecule Analyzer (MOMA) Laser Desorption/Ionization Mass Spectrometry (LDI-MS) Analysis of Phototrophic Communities from a Silica-Depositing Hot Spring in Yellowstone National Park, USA
Author(s) -
Sandra Siljeström,
Xiang Li,
W. B. Brinckerhoff,
Friso van Amerom,
Sherry L. Cady
Publication year - 2021
Publication title -
astrobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.234
H-Index - 90
eISSN - 1531-1074
pISSN - 1557-8070
DOI - 10.1089/ast.2020.2368
Subject(s) - exploration of mars , mars exploration program , mass spectrometry , martian , chemistry , astrobiology , environmental chemistry , analytical chemistry (journal) , chromatography , physics
The Mars Organic Molecule Analyzer (MOMA) is a key scientific instrument on the ExoMars Rover mission. MOMA is designed to detect and characterize organic compounds, over a wide range of volatility and molecular weight, in samples obtained from up to 2 m below the martian surface. Thorough analog sample studies are required to best prepare to interpret MOMA data collected on Mars. We present here the MOMA characterization of Mars analog samples, microbial streamer communities composed primarily of oxygenic and anoxygenic phototrophs, collected from an alkaline silica-depositing hot spring in Yellowstone National Park, Wyoming, USA. Samples of partly mineralized microbial streamers and their total lipid extract (TLE) were measured on a MOMA Engineering Test Unit (ETU) instrument by using its laser desorption/ionization mass spectrometry (LDI-MS) mode. MOMA LDI-MS detected a variety of lipids and pigments such as chlorophyll a, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, diacylglycerols, and β-carotene in the TLE sample. Only chlorophyll a was detected in the untreated streamer samples when using mass isolation, which was likely due to the higher background signal of this sample and the relative high ionization potential of the chlorophyll a compared with other compounds in unextracted samples. The results add to the LDI-MS sample characterization database and demonstrate the benefit of using mass isolation on the MOMA instrument to reveal the presence of complex organics and potential biomarkers preserved in a natural sample. This will also provide guidance to in situ analysis of surface samples during Mars operations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here