Interactions Between Iron Sulfide Minerals and Organic Carbon: Implications for Biosignature Preservation and Detection
Author(s) -
Aude Picard,
Amy Gartman,
Peter R. Girguis
Publication year - 2021
Publication title -
astrobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.234
H-Index - 90
eISSN - 1531-1074
pISSN - 1557-8070
DOI - 10.1089/ast.2020.2276
Subject(s) - chemistry , iron sulfide , mineral , sulfide minerals , carbon fibers , organic matter , sulfide , chemical engineering , inorganic chemistry , organic chemistry , materials science , sulfur , composite number , engineering , composite material
Microbe-mineral interactions can produce unique composite materials, which can preserve biosignatures. Geological evidence suggests that iron sulfide (Fe-S) minerals are abundant in the subsurface of Mars. On Earth, the formation of Fe-S minerals is driven by sulfate-reducing microorganisms (SRM) that produce reactive sulfide. Moreover, SRM metabolites, as well as intact cells, can influence the morphology, particle size, aggregation, and composition of biogenic Fe-S minerals. In this work, we evaluated how simple and complex organic molecules-hexoses and amino acid/peptide mixtures, respectively-influence the formation of Fe-S minerals (simulated prebiotic conditions), and whether the observed patterns mimic the biological influence of SRM. To this end, organo-mineral aggregates were characterized with X-ray diffraction, scanning electron microscopy, and scanning transmission X-ray microscopy coupled to near-edge X-ray absorption fine structure spectroscopy. Overall, Fe-S minerals were found to have a strong affinity for proteinaceous organic matter. Fe-S minerals precipitated at simulated prebiotic conditions yielded organic carbon distributions that were more homogeneous than treatments with whole SRM cells. In prebiotic experiments, spectroscopy detected potential organic transformations during Fe-S mineral formation, including conversion of hexoses to sugar acids and polymerization of amino acids/peptides into larger peptides/proteins. In addition, prebiotic mineral-carbon assemblages produced nanometer-scaled filamentous aggregated morphologies. On the contrary, in biotic treatments with cells, organic carbon in minerals displayed a more heterogeneous distribution. Notably, "hot spots" of organic carbon and oxygen-containing functional groups, with the size, shape, and composition of microbial cells, were preserved in mineral aggregates. We propose a list of characteristics that could be used to help distinguish biogenic from prebiotic/abiotic Fe-S minerals and help refine the search of extant or extinct microbial life in the martian subsurface.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom