z-logo
open-access-imgOpen Access
Imaging of Vanadium in Microfossils: A New Potential Biosignature
Author(s) -
Craig P. Marshall,
Alison Olcott Marshall,
Jade B. Aitken,
Barry Lai,
Stefan Vogt,
Pierre Breuer,
Philippe Steemans,
Peter A. Lay
Publication year - 2017
Publication title -
astrobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.234
H-Index - 90
eISSN - 1531-1074
pISSN - 1557-8070
DOI - 10.1089/ast.2017.1709
Subject(s) - diagenesis , vanadium , early earth , archean , astrobiology , geology , carbonaceous chondrite , tetrapyrrole , porphyrin , abiogenesis , geologic record , biomineralization , paleontology , chemistry , meteorite , biology , chondrite , photochemistry , biochemistry , enzyme , inorganic chemistry
The inability to unambiguously distinguish the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from nonbiological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This, too, is important for the search for life on Mars by in situ analyses via rovers or sample return missions for future analysis here on Earth. Here, we report the application of synchrotron X-ray fluorescence imaging of vanadium, within thermally altered organic-walled microfossils of bona fide biological origin. From our data, we demonstrate that vanadium is present within microfossils of undisputable biological origin. It is well known in the organic geochemistry literature that elements such as vanadium are enriched and contained within crude oils, asphalts, and black shales that have been formed by diagenesis of biological organic material. It has been demonstrated that the origin of vanadium is due to the diagenetic alteration of precursor chlorophyll and heme porphyrin pigment compounds from living organisms. We propose that, taken together, microfossil-like morphology, carbonaceous composition, and the presence of vanadium could be used in tandem as a biosignature to ascertain the biogenicity of putative microfossil-like structures. Key Words: Microfossils-Synchrotron micro-X-ray fluorescence-Vanadium-Tetrapyrrole-Biosignature. Astrobiology 17, 1069-1076.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom