z-logo
open-access-imgOpen Access
Nix-Mediated Mitophagy Modulates Mitochondrial Damage During Intestinal Inflammation
Author(s) -
Garret Vincent,
Elizabeth Novak,
Vei Shaun Siow,
K. Cunningham,
Brian D. Griffith,
Thomas E. Comerford,
Heather Mentrup,
Donna B. Stolz,
Patricia Loughran,
Sarangarajan Ranganathan,
Kevin P. Mollen
Publication year - 2020
Publication title -
antioxidants and redox signaling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.277
H-Index - 190
eISSN - 1557-7716
pISSN - 1523-0864
DOI - 10.1089/ars.2018.7702
Subject(s) - mitophagy , intestinal epithelium , inflammatory bowel disease , inflammation , mitochondrion , colitis , pathogenesis , ulcerative colitis , microbiology and biotechnology , intestinal mucosa , biology , immunology , epithelium , medicine , disease , pathology , biochemistry , autophagy , apoptosis , genetics
Aims: Mitochondrial stress and dysfunction within the intestinal epithelium are known to contribute to the pathogenesis of inflammatory bowel disease (IBD). However, the importance of mitophagy during intestinal inflammation remains poorly understood. The primary aim of this study was to investigate how the mitophagy protein BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L/NIX) mitigates mitochondrial damage during intestinal inflammation in the hopes that these data will allow us to target mitochondrial health in the intestinal epithelium as an adjunct to immune-based treatment strategies. Results: In the intestinal epithelium of patients with ulcerative colitis, we found that NIX was upregulated and targeted to the mitochondria. We obtained similar findings in wild-type mice undergoing experimental colitis. An increase in NIX expression was found to depend on stabilization of hypoxia-inducible factor-1 alpha (HIF1α), which binds to the Nix promoter region. Using the reactive oxygen species (ROS) scavenger MitoTEMPO, we were able to attenuate disease and inhibit both HIF1α stabilization and subsequent NIX expression, suggesting that mitochondrially derived ROS are crucial to initiating the mitophagic response during intestinal inflammation. We subjected a global Nix -/- mouse to dextran sodium sulfate colitis and found that these mice developed worse disease. In addition, Nix -/- mice were found to exhibit increased mitochondrial mass, likely due to the inability to clear damaged or dysfunctional mitochondria. Innovation: These results demonstrate the importance of mitophagy within the intestinal epithelium during IBD pathogenesis. Conclusion: NIX-mediated mitophagy is required to maintain intestinal homeostasis during inflammation, highlighting the impact of mitochondrial damage on IBD progression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here