
A new formulation of gradient boosting
Author(s) -
Alex Wozniakowski,
Jayne Thompson,
Mile Gu,
Felix C. Binder
Publication year - 2021
Publication title -
machine learning: science and technology
Language(s) - English
Resource type - Journals
ISSN - 2632-2153
DOI - 10.1088/2632-2153/ac1ee9
Subject(s) - boosting (machine learning) , gradient boosting , stacking , regression , computer science , calibration , artificial intelligence , machine learning , algorithm , pattern recognition (psychology) , mathematics , statistics , physics , random forest , nuclear magnetic resonance
In the setting of regression, the standard formulation of gradient boosting generates a sequence of improvements to a constant model. In this paper, we reformulate gradient boosting such that it is able to generate a sequence of improvements to a nonconstant model, which may contain prior knowledge or physical insight about the data generating process. Moreover, we introduce a simple variant of multi-target stacking that extends our approach to the setting of multi-target regression. An experiment on a real-world superconducting quantum device calibration dataset demonstrates that our approach outperforms the state-of-the-art calibration model even though it only receives a paucity of training examples. Further, it significantly outperforms a well-known gradient boosting algorithm, known as LightGBM, as well as an entirely data-driven reimplementation of the calibration model, which suggests the viability of our approach.