
Plasmonic colored nanopaper: a potential preventive healthcare tool against threats emerging from uncontrolled UV exposure
Author(s) -
Leydi Francisco-Aldana,
Eden MoralesNarváez
Publication year - 2019
Publication title -
jphys photonics
Language(s) - English
Resource type - Journals
ISSN - 2515-7647
DOI - 10.1088/2515-7647/ab41aa
Subject(s) - plasmon , materials science , context (archaeology) , nanotechnology , nanoparticle , optoelectronics , computer science , paleontology , biology
Preventive healthcare is crucial to hinder or delay the onset of disease, furthermore it contributes to healthy and productive lifestyles and saves resources allocated to public health. Herein, we explore how the plasmonic coupling of silver and gold nanoparticles embedded within nanopaper allows for potential preventive healthcare tools based on a change in plasmonic color. Particularly, we selected UV radiation exposure as a potential threat to health to be monitored via plasmonic colored nanopaper (PCN). Uncontrolled UV radiation exposure is not only known to provoke epidermal damage, but also to trigger leaching of hazardous compounds from polycarbonate containers. In this context, we engineered UV-responsive PCN devices whose sensing mechanism is based on UV photodegradation of silver nanoparticles. Since absorbance and scattering of metal nanoparticles strongly depend on their size and inter-particle distance, the resulting PCN detectors are able to warn of the potential UV radiation-induced threat via a visually observable plasmonic color change with a yellowish/reddish transition. Epidermal experiments with tattoo-like PCN devices prove the resulting detectors can change in color upon safe dose of sun exposure. Moreover, PCN detectors stuck on polycarbonate containers also change in color after moderate sun exposure. This cost-effective and lightweight nanophotonic device leads to a versatile preventive healthcare tool.