z-logo
open-access-imgOpen Access
Bistability study of buckled MEMS diaphragms
Author(s) -
Dilan Ratnayake,
Masoud Derakhshani,
Thomas A. Berfield,
Kevin Walsh
Publication year - 2020
Publication title -
journal of physics communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.407
H-Index - 17
ISSN - 2399-6528
DOI - 10.1088/2399-6528/abbe5e
Subject(s) - bistability , materials science , microelectromechanical systems , finite element method , bilayer , structural engineering , optoelectronics , engineering , membrane , biology , genetics
Bistable elements are candidate structures for the evolving field of MEMS-based no-power event-driven sensors. In this paper, we present a strategy for producing bistable elements and investigate two compatible bilayer material systems for their realization using MEMS technology. Both bilayer systems leverage thermally-grown silicon dioxide as the principal stress-producing layer and a second material (either polyimide or aluminum) as the main structural layer. Arrays of buckled circular diaphragms, ranging in diameter from 100 μ m to 700 μ m in 50 μ m increments, were fabricated and their performances were compared to modeled and FEA-simulated results. In all cases, the diaphragms buckled when DRIE-released as expected, and their buckled experimental heights were within 9.1% of the theory and 1.8% of the FEA prediction. Interestingly, the smaller diameter structures exhibited a directional bias which we investigate and forecast using FEA. These bistable mechanical elements have the ability to serve as building blocks for no-power threshold-driven smart switches. New contributions to the field include: (a) introduction of a new bistable material system made from aluminum and compressive oxide, (b) investigation of diaphragm diameter size as it related to the phenomena of bistability versus non-bistability, (c) FEA analysis of the critical transition between bistability and non-bistability, and (d) introduction of the ‘dome factor’ term to describe dome quality.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here