
Microstructure evolution, mechanical properties, and fractography of AA7068/ Si3N4 nanocomposite fabricated thorough ultrasonic-assisted stir casting advanced with bottom pouring technique
Author(s) -
Aashish Kumar,
R.S. Rana,
Rajesh Purohit
Publication year - 2022
Publication title -
materials research express
Language(s) - English
Resource type - Journals
ISSN - 2053-1591
DOI - 10.1088/2053-1591/ac4b78
Subject(s) - materials science , ultimate tensile strength , microstructure , alloy , nanocomposite , composite material , fractography , ductility (earth science) , compressive strength , ceramic , indentation hardness , casting , composite number , metallurgy , creep
Ceramic particulate embedded aluminum metal matrix nanocomposites (AMNCs) possess superior mechanical and surface properties and lightweight features. AMNCs are a suitable replacement of traditional material, i.e., steel, to make automotive parts. The current work deals with developing Si 3 N 4 strengthened high strength AA7068 nanocomposites via novel ultrasonic-assisted stir casting method advanced with bottom pouring setup in the proportion of 0.5, 1.0, 1.5, and 2 wt.%. Planetary ball milling was performed on a mixture of AA7068 powder and Si 3 N 4 (in the proportion of 3:1) before incorporation in aluminum alloy melt to avoid rejection of fine particles. Finite element scanning electron microscope (FESEM), Energy dispersive spectroscopy (EDS), X-Ray diffraction (XRD), and Elemental mapping techniques were used in the microstructural investigation. Significant grain refinement was observed with increasing reinforcing content, whereas agglomeration was found at higher weight %. Hardness, Tensile strength, ductility, porosity content, compressive strength, and impact energy were also examined of pure alloy and each composite. Improvement of 72.71%, 50.07%, and 27.41 % was noticed in hardness value, tensile strength, and compressive strength, respectively, at 1.5 weight % compared to base alloy because of various strengthening mechanisms. These properties are decreased at 2 wt.% due to severe agglomeration. In contrast, nanocomposite’s ductility and impact strength continuously decrease compared to monolithic AA7068. Fracture analysis shows the ductile and mixed failure mode in alloy and nanocomposites.