
Machining and corrosion studies on HfC reinforced ZE41 magnesium matrix composites
Author(s) -
P Sathish Kumar,
P. M. Gopal,
T.S. Senthilkumar
Publication year - 2021
Publication title -
materials research express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.383
H-Index - 35
ISSN - 2053-1591
DOI - 10.1088/2053-1591/ac37d7
Subject(s) - materials science , scanning electron microscope , composite material , electron backscatter diffraction , corrosion , ultimate tensile strength , magnesium , energy dispersive x ray spectroscopy , carbide , metallurgy , microstructure
In this paper, Hafnium Carbide (HfC) reinforced ZE41 Magnesium Matrix Composites (MMCs) were prepared by using stir casting method. Using three different reinforcement percentages of HfC such as 5%, 10% and 15% by wt., ZE41-HfC MMCs were prepared. The mechanical characteristics of ZE41-HfC MMCs were evaluated by subjecting them to tensile and surface micro-hardness studies. Using X-Ray diffraction (XRD) studies, chemical compounds formed in the interfacial layer between HfC & ZE41 Mg was observed. Using optical microscopy (OM) and scanning electron microscopy (SEM), the surface modifications in the composites due to HfC addition was studied. Using electron backscatter diffraction analysis (EBSD), the changes in particle grain sizes and orientation of ZE41-HfC MMCs were studied. Energy Dispersive Spectroscopy (EDS) analysis was used to identify the variations in elemental composition of the prepared ZE41-HfC MMCs. ZE41-HfC MMCs were subjected to drilling studies for identifying the variations in cutting forces. Using electrochemical studies, the corrosion resistance of ZE41-HfC MMCs was observed. SEM images of corroded ZE41-HfC MMCs revealed micro cracks and dense pits near HfC agglomerated region.