z-logo
open-access-imgOpen Access
Effect of final cooling temperature on the microstructure and mechanical properties of high-strength anti-seismic rebar
Author(s) -
Zeyun Zeng,
Changrong Li,
Zhiying Li,
Yongqiang Zhai,
Jie Wang,
ZhanLin Liu
Publication year - 2021
Publication title -
materials research express
Language(s) - English
Resource type - Journals
ISSN - 2053-1591
DOI - 10.1088/2053-1591/ac2529
Subject(s) - materials science , rebar , microstructure , electron backscatter diffraction , ultimate tensile strength , pearlite , ferrite (magnet) , composite material , austenite , metallurgy
Rebar is an important material in the major structural engineering, and its fine structure has a very important effect on the performance of the rebar. In this work, the Gleeble-3800 thermal simulator was used to simulate and control the final cooling temperature process to explore the effect of the precipitation behavior of the microalloying elements on the microstructure and mechanical properties of the rebar. The electron backscatter diffraction (EBSD), high-resolution transmission electron microscope (TEM), and universal tensile testing machine were used to characterize the microstructural transformation and mechanical properties of high-strength anti-seismic rebar. The results shows that under the conditions of different final cooling temperatures, the microstructure of the rebar were mainly composed of ferrite and pearlite. When the final cooling temperature decreased from 750 °C to 650 °C, the ferrite grain size decreased from 0.01237 mm to 0.00678 mm and the pearlite lamellar spacing decreased from 0.226 μ m to 0.114 μ m. The EBSD results found that the most of ferrite grains with larger misorientation angle (20° ∼ 60°) formed by the different austenite grains. The TEM results found that the main precipitates were (Nb, Ti, V) C, which precipitated on the ferrite matrix, and the shapes were oval, and the average particle sizes were about 20 ∼ 30 nm. When the final cooling temperature was 650 °C, the tensile strength and yield strength of the rebar reached 712.94 MPa and 562.97 MPa, respectively, and strength yield ratio was 1.27. With the decreases in the final cooling temperature, the tensile strength and yield strength of the rebar gradually increased.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here