z-logo
open-access-imgOpen Access
Predicting the effect of fiber orientations and boundary conditions on the optimal placement of PZT sensor on the composite structures
Author(s) -
Rahul Samyal,
Ashok Kumar Bagha,
Raman Bedi,
Shashi Bahl,
Kuldeep K. Saxena,
Shankar Sehgal
Publication year - 2021
Publication title -
materials research express
Language(s) - English
Resource type - Journals
ISSN - 2053-1591
DOI - 10.1088/2053-1591/ac0de9
Subject(s) - modal , composite number , materials science , position (finance) , boundary value problem , aerospace , boundary (topology) , fiber , finite element method , composite material , orientation (vector space) , structural engineering , engineering , geometry , mathematics , mathematical analysis , aerospace engineering , finance , economics
In this paper, the modal-model of the composite structure is predicted and viewed to decide the optimal position of the PZT sensors on the composite structures. The novelty of this work is to systematically study the effect of fiber orientations and boundary conditions on the modal-model and the optimal location of the PZT sensors on the composite structures. The glass fibers are reinforced in a polyester matrix at different fiber orientations such as 0°, 30°, 45°, 60° and 90°. It is used for various engineering applications, especially in the aerospace and automobile sector, and it is very important to measure its dynamical response. The PZT patches can be embedded on the composite structures to measure their vibrational response. In this paper, ABAQUS software is used to build the finite element model of the PZT-composite structure. The composite structure is modeled with different boundary conditions. It is observed that the orientation of the fibers as well as the boundary condition directly put their effect on the modal-model of the composite structure and also on the selection of the optimal position of the PZT patches. It is found that the optimal position of the PZT directly depends upon the fiber orientation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here