
Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si\In2O3:Er films.
Author(s) -
K. V. Feklistov,
A. G. Lemzyakov,
Igor P. Prosvirin,
A. A. Gismatulin,
A. A. Shklyaev,
Yu. A. Zhivodkov,
G. K. Krivyakin,
А. I. Komonov,
А. С. Кожухов,
Evgeny V. Spesivsev,
D. V. Gulyaev,
D. S. Abramkin,
A. M. Pugachev,
D. G. Esaev,
G. Yu. Sidorov
Publication year - 2020
Publication title -
materials research express
Language(s) - English
Resource type - Journals
ISSN - 2053-1591
DOI - 10.1088/2053-1591/abd06b
Subject(s) - materials science , photoluminescence , band gap , cavity magnetron , thermionic emission , silicon , band offset , optoelectronics , condensed matter physics , analytical chemistry (journal) , electron , nanotechnology , thin film , chemistry , sputtering , physics , valence band , chromatography , quantum mechanics
RF magnetron-deposited Si\In 2 O 3 :Er films have the structure of the single-crystalline bixbyite bcc In 2 O 3 nanowires bunched into the columns extended across the films. The obtained films have a typical In 2 O 3 optical band gap of 3.55 eV and demonstrate the 1.54 μ m Er 3+ room temperature photoluminescence. The current across the film flows inside the columns through the nanowires. The current through the MOS-structure with the intermediate low barrier In 2 O 3 :Er dielectric was investigated by the thermionic emission approach, with respect to the partial voltage drop in silicon. Schottky plots ln(I/T 2 ) versus 1 /kT of forward currents at small biases and backward currents in saturation give the electron forward n-Si\In 2 O 3 :Er barrier equal to 0.14 eV and the backward In\In 2 O 3 :Er barrier equal to 0.21 eV.