
Microstructural, mechanical and tribological characterization on the Al based functionally graded material fabricated powder metallurgy
Author(s) -
Pns Srinivas,
Ravindra Babu P,
B. Balakrishna
Publication year - 2020
Publication title -
materials research express
Language(s) - English
Resource type - Journals
ISSN - 2053-1591
DOI - 10.1088/2053-1591/ab6f41
Subject(s) - materials science , sintering , microstructure , taguchi methods , composite material , powder metallurgy , tribology , silicon carbide , fabrication , composite number , functionally graded material , indentation hardness , scanning electron microscope , compressive strength , material properties , medicine , alternative medicine , pathology
The characteristics of composite materials can be enhanced by using it as functionally graded composites (FGM). In this work, four-layer FGMs are produced by using aluminum, silicon carbide,and magnesium peroxide. The entire fabrication process has been performed through the sintering process, in which, the powder methodology is used to blend the particles of each material. During the fabrication of FGM, three parameters such as sintering time, sintering temperature and compacting pressure are considered. Four layers of the FGM are formulated as 100% of pure aluminum, 90%Al + 10%SiC, 90%Al + 5%SiC + 5%MgO 2 , and 85%Al + 5%SiC + 10%MgO 2 respectively. The created FGMs have been analyzed to find out the mechanical, tribological and microstructural characteristics. The microstructure and worn-out surface of the FGM layers are analyzed via the scanning electron microscopy. In the mechanical analysis, the compressive strength and hardness characteristics of FGM material are investigated. The outcomes of the mechanical analysis are exhibited that the FGMs deliver the finest compressive strength,microhardness,and macro hardness as 315 Mpa, 1.26 Gpa,and 1.87 Gpa which are higher than the composite materials. Finally, Taguchi optimization has been performed to determine the optimum process parameters in terms of mechanical characteristics. The results of the Taguchi optimization exhibited that the mechanical characteristics of FGM are highly depending upon the sintering temperature and slightly on compacting pressure and sintering time.