
The influence of different glass fiber/epoxy matrix combinations on the durability under severe moisture impact
Author(s) -
Dennis Gibhardt,
C. Fleschhut,
Bodo Fiedler
Publication year - 2020
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/942/1/012009
Subject(s) - durability , materials science , composite material , sizing , fibre reinforced plastic , ultimate tensile strength , glass fiber , interphase , moisture , absorption of water , epoxy , composite number , fiber , polymer , art , visual arts , biology , genetics
The growing success of fiber reinforced polymers (FRP) as material for the construction of high-performance lightweight structures used under maritime environmental conditions, requires foremost the knowledge about their long term durability. As the supplier market is still growing fast, methods which allow manufacturers to distinguish between suitable and less suitable composites are needed. In this study, the effects of moisture on the mechanical properties of glass fiber reinforced polymers (GFRP) using different glass fiber fabrics are investigated under several ageing and testing conditions. Focusing on the fabrics and introducing an ageing method prior to composite manufacturing, allows to describe the proportions of fiber, matrix, sizing and interphase damage to the composites durability in more detail. Absorption quantity related testing after ageing at temperatures between 8°C and 50 °C highlights the resulting effects on the tensile strength of mostly unidirectional GFRPs. The strength of composites based on fabrics with high resistance to moisture degradation decreases steady but moderate during absorption. This effect is mainly associated with changes of matrix properties. However, less durable composites show a two-stage behavior. In this case, severe interphase damage and cracking leads to an additional drastic strength decrease when exceeding a defined amount of water absorption.