z-logo
open-access-imgOpen Access
SDN-RA: An Optimized Reschedule Algorithm of SDN Load Balancer for Data Center Networks Based on QoS
Author(s) -
Umniah N. Kadim,
Imad J. Mohammed
Publication year - 2020
Publication title -
iop conference series materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/928/3/032057
Subject(s) - computer science , software defined networking , data center , forwarding plane , cloud computing , quality of service , computer network , network topology , throughput , controller (irrigation) , networking hardware , distributed computing , operating system , network packet , wireless , agronomy , biology
With the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Reschedule Algorithm (called SDN-RA) for cloud data center networks. The SDN-RA performance is validated and compared as results to other two corresponding SDN; ECMP and Hedera methods. The simulation environment of current work implemented using Fat-Tree topology over Mininet emulator which is connected to the Ryu-SDN controller. The performance evaluation of SDN-RA shows an increase in the network in terms of throughput and link utilization besides a reduction of RTT delay and loss rate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Empowering knowledge with every search

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom