z-logo
open-access-imgOpen Access
In-store Customer Shopping Behavior Analysis by Utilizing RFID-enabled Shelf and Multilayer Perceptron Model
Author(s) -
Ganjar Alfian,
Muhammad Syafrudin,
Jongtae Rhee,
Pavel Staša,
Agus Mulyanto,
Agung Fatwanto
Publication year - 2020
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/803/1/012022
Subject(s) - rss , computer science , product (mathematics) , revenue , radio frequency identification , world wide web , business , geometry , mathematics , accounting , computer security
Understanding customer shopping behavior in retail store is important to improve the customers’ relationship with the retailer, which can help to lift the revenue of the business. However, compared to online store, the customer browsing activities in the retail store is difficult to be analysed. Therefore, in this study the customer shopping behavior analysis (i.e., browsing activity) in retail store by utilizing radio frequency identification (RFID)-enabled shelf and machine learning model is proposed. First, the RFID technology is installed in the store shelf to monitor the movement tagged products. The dataset was gathered from receive signal strength (RSS) of the tags for different customer behavior scenario. The statistical features were extracted from RSS of tags. Finally, machine learning models were utilized to classify different customer shopping activities. The experiment result showed that the proposed model based on Multilayer Perceptron (MLP) outperformed other models by as much as 97.00%, 96.67%, 97.50%, and 96.57% for accuracy, precision, recall, and f-score, respectively. The proposed model can help the managers better understand what products customer interested in, so that can be utilized for product placement, promotion as well as relevant product recommendations to the customers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here