
Computation of temperature field by cell method and comparing with commercial software
Author(s) -
Marek Pernica,
Tomáš Létal,
Petr Lošák,
Martin Naď
Publication year - 2020
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/776/1/012045
Subject(s) - baffle , shell and tube heat exchanger , heat exchanger , mechanical engineering , mechanics , thermal hydraulics , micro heat exchanger , plate fin heat exchanger , plate heat exchanger , materials science , engineering , heat transfer , physics
This paper deals with the temperature field of the shell and tube heat exchanger with segmental baffles. Two different types of shell and tube heat exchangers were analysed by a numerical model for thermal-hydraulic rating called the cell method. The cell method is a numerical computational model for calculating of temperature field of a shell and tube heat exchanger with segmental baffles. A huge benefit of the cell method is especially its simplicity. The computation of temperature field by the cell method is very fast and without the necessity of powerful hardware accessories. For analyses, two different types of shell and tube heat exchangers with segmental baffles were used. First, a co-current flow heat exchanger with a floating head and second a counter-current flow heat exchanger with a fixed tubesheet. Both analysed heat exchangers are horizontal, have one tube and one shell pass and segmental baffles. The results from cell method were compared with results from the commercial software for thermal-hydraulic rating HTRI, which is one of the most widely used commercial software for solving thermal-hydraulic rating of heat exchangers. The scope of this paper is to assess how exact the cell method is and if its results are useful for a mechanical design of shell and tube heat exchanger with segmental baffles.