z-logo
open-access-imgOpen Access
Model Predictive Control for Helium Compression Station: Simulation and experimental Results
Author(s) -
Xuan-Huy Pham,
François Bonne,
Mazen Alamir,
P. Bonnay,
Agnès Attard
Publication year - 2020
Publication title -
iop conference series materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/755/1/012075
Subject(s) - model predictive control , gas compressor , control theory (sociology) , controller (irrigation) , computer science , control (management) , engineering , mechanical engineering , agronomy , artificial intelligence , biology
This paper deals with multivariable on-line model predictive control (MPC) for helium Warm Compression Stations (WCS). During WCS operation, control algorithms must ensure that the operational constraints are respected. These constraints can be imposed by the system itself (valves open from 0 to 100%, compressor maximum electrical current and pressures, …), or imposed by the users (valves which must remain closed or open to a minimum other than 0, pressures which should not be too low or too high). The MPC controller takes into account the constraints and set points into one optimization problem, which makes it the ideal candidate to control the WCS. The papers presents experimental results obtained on the SBT WCS, showing that the WCS is running safely while taking into account the constraints. The experimental tests shows that using MPC leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, which is a key-aspect in the case of large-scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching a stopping criteria (such as excessive pressures) under high disturbances (such as the pulsed heat load expected to take place in future fusion reactors).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom