Open Access
Basics for inline measurement of tribological conditions in series production of car body parts
Author(s) -
Bertel Hansen,
M. Hoebler,
Stephan Purr,
Josef Meinhardt,
Marion Merklein
Publication year - 2019
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/651/1/012050
Subject(s) - lubricant , tribology , surface roughness , materials science , surface finish , process (computing) , galvanization , composite material , lubrication , engineering drawing , mechanical engineering , layer (electronics) , computer science , engineering , operating system
The quality of car body parts in series production is strongly dependent on the tribological behavior. Fluctuating material properties such as the sheet roughness and the amount of lubricant have an influence on the forming process. On the basis of large amounts of data it is possible to investigate the friction behavior in series production and to make process adjustments if required. Therefore, inline measurement systems have a great potential to detect the sheet roughness during the cutting process of blanks in the coil line. Furthermore, contactless systems are advantageous as they do not damage the surface. Nevertheless, the optical measuring is influenced by the lubricant layer on top of the surface. Therefore, the previously unknown impact of the lubricant on the measuring result is investigated. Within this study, stationary optical roughness measurements have been conducted using different amounts of lubricant on hot-dip galvanized EDT steel. The results demonstrate the influence of different amounts of lubricant on the sheet roughness measurement. Hence, it is possible to correct the inline measuring results and gain knowledge of fluctuating surface roughness. In addition, strip drawing test has been carried out to investigate the effect of fluctuating tribological conditions.