Open Access
Knowledge-oriented Hierarchical Neural Network for Sentiment Classification
Author(s) -
Yanliu Wang,
Pengfei Li
Publication year - 2019
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/646/1/012023
Subject(s) - overfitting , computer science , artificial intelligence , lexicon , convolutional neural network , sentiment analysis , natural language processing , sentence , feature engineering , feature (linguistics) , artificial neural network , wordnet , relevance (law) , deep learning , machine learning , linguistics , philosophy , political science , law
Sentiment classification aims to classify the sentimental polarities of given texts. Lexicon-based approaches utilize lexical resources to explore the opinions according to some specific rules, whose effectiveness strongly depends on the goodness of the lexical resources and the rules. Traditional machine-learning methods tightly rely on feature engineering and external NLP toolkits with unavoidable errors. Deep learning models strongly rely on a large amount of labelled data to train their numerous parameters, which often suffer from overfitting issue since it is difficult to obtain sufficient training data. To address the issues, we design a model that combines Knowledge-oriented Convolutional Neural Network (K-CNN) and bidirectional Gated Recurrent Neural Network (biGRU) in a hierarchical way for sentiment classification. Firstly K-CNN is used to capture the n-gram features in sentences. Sentiment word filters are constructed in the knowledge-oriented channel of K-CNN based on the linguistic knowledge from SentiWv ordNet, which can capture the sentiment lexicons and alleviate overfitting effectively. Then biGRU with attention mechanism is utilized to model the sequential relations between sentences and obtain the document-level representation based on the relevance of each sentence to the final sentiment classification. Experiments on two datasets show that our model outperforms other classical deep neural network models.