
Numerical simulation of friction stir welding of pure copper plates
Author(s) -
Marius Adrian Constantin,
Eduard Niţu,
Claudiu Bădulescu
Publication year - 2019
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/564/1/012031
Subject(s) - fusion welding , friction stir welding , welding , materials science , copper , metallurgy , process (computing) , thermal diffusivity , finite element method , computer simulation , mechanical engineering , electric resistance welding , fusion , thermal , mechanics , composite material , structural engineering , thermodynamics , computer science , engineering , physics , linguistics , philosophy , operating system
Friction Stir Welding (FSW) is a joining process which is performed at low temperatures, lower than the melting temperature of the base material, thus it is considered a solid state welding process. This feature makes it suitable for copper welding, material whose thermal diffusivity is higher than that of most steel alloys. Large heat losses identified at copper welding by fusion welding processes are thus reduced using FSW process. Because of the shown efficiency and the innovative character of this process, many actions have been initiated in order to optimize it. The aim of this paper is to develop a three-dimensional coupled thermo-mechanical finite element (FE) model of FSW process for pure copper plates using the Coupled Eulerian-Lagrangian (CEL) formulation given in the FE code ABAQUS V6.13. The CEL formulation is one of the few formulations that are capable of handling with such large deformations. The developed numerical model was validated by comparing its results related to the temperatures calculated in the process time with those measured in performed experiments using the same process parameters. This model was capable of simulating the FSW of copper plates and of anticipating the temperature distribution and burrs formation in the weld bead.