
Establishment of rubber thermo-viscoelastic constitutive model and analysis of temperature field
Author(s) -
Huaqiang Chu,
Yaping Hong,
Qi Chen,
Rui Wang
Publication year - 2019
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/531/1/012042
Subject(s) - viscoelasticity , constitutive equation , materials science , superposition principle , natural rubber , rubber elasticity , mechanics , stress relaxation , elasticity (physics) , work (physics) , time–temperature superposition , hysteresis , heat generation , composite material , thermodynamics , creep , finite element method , physics , mathematics , mathematical analysis , quantum mechanics
Rubber has strong nonlinear viscoelastic behavior. Under the periodically changing external forces, it show deformation hysteresis, mechanical loss and heat generation. In this work, a pair of extruding and rotating steel-rubber rollers was researched. Stress relaxation data at different temperatures were obtained through dynamic thermomechanical analysis experiments. A thermo-viscoelastic rubber constitutive model with temperature factor was obtained by combining the generalized Maxwell model where parameters of rubber viscoelastic were fitted with Prony series. Then, the temperature experiment of structure was conducted on the experimental platform. Based on thermo-viscoelastic constitutive model, simulation and analysis of temperature distribution of steel-rubber roller was obtained. The results of experimental data were consistent with simulation results. Further, the rubber constitutive models of pure elasticity, the superposition of elasticity and viscoelasticity with non-temperature factors, the superposition of elasticity and viscoelasticity with temperature factors were simulated respectively. The results show that the third model was more consistent with the actual experimental results, which verifies the accuracy of constitutive model building by this work. Through numerical comparison and analysis, it was proved that viscoelastic hysteretic heat generation is an indispensable source of heat generation in rubber structure movement.