
New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification
Author(s) -
А. А. Светашков,
A A Vakurov
Publication year - 2016
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/124/1/012099
Subject(s) - viscoelasticity , moduli , isotropy , materials science , composite material , kelvin–voigt material , composite number , mathematics , mathematical analysis , physics , quantum mechanics
According to the approach based on the commonality of problems of determining effective moduli of composites and viscoelastic solids, which properties are time-inhomogeneous, it is assumed that a viscoelastic solid is a two-component composite. One component displays temporal properties defined by a pair of Castiglianian-type effective moduli, and the other is defined by a pair of Lagrangian-type effective moduli. The Voigt and Reuss averaging is performed for the obtained two-composite solid with the introduction of a time function of volume fraction. In order to determine closer estimates, a method of iterative transformation of time effective moduli is applied to the viscoelastic Voigt-Reuss model. The physical justification of the method is provided. As a result, new time effective moduli of the viscoelastic solid are obtained which give a closer estimate of temporal properties as compared to the known models