Open Access
Investigation on failure mechanism of electrical connectors under repetitive mechanical insertion and withdrawal operations
Author(s) -
Yue Meng,
Wanbin Ren
Publication year - 2021
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/1207/1/012011
Subject(s) - cable gland , interconnection , materials science , electrical contacts , electrical resistance and conductance , contact resistance , degradation (telecommunications) , electronic component , computer science , composite material , mechanical engineering , engineering , telecommunications , layer (electronics)
Electrical connector is an essential accessory component for electrical and electronic interconnection circuit. In order to investigate the degradation behavior of electrical connector, a series of repetitive mechanical insertion and withdrawal operations of electrical connector have been carried out. The results indicate that there is an increasing trend in insertion/extraction force in the initial stage. Afterwards, it becomes a gradually decreasing trend attributed to the mechanical wear of the contact components. In addition, the oxidative wear of substrate copper alloy material causes the fluctuation phenomenon of contact resistance. The relevant mathematic models for insertion/extraction force and contact resistance calculation are presented to research the dynamic insertion/extraction process. Finally, the degradation behavior and associated physical mechanisms are proposed by analysing the laser confocal photographs and parameter waveforms comparison.