
New technology in 3D Concrete Printing by Using Ground Granulated Blast-Furnace Slag: A Review
Author(s) -
Norhafizah Salleh,
Nur Syahera Jamalulail,
Nor Aziati Abdul Hamid,
Zalipah Jamellodin,
Masni A. Majid,
Nurul Huda Suliman
Publication year - 2021
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/1200/1/012007
Subject(s) - ground granulated blast furnace slag , 3d printing , cement , portland cement , compressive strength , slag (welding) , materials science , waste management , mortar , environmental science , engineering , composite material
3D building printing is a technology for producing 3D models of an object to build any shape or size in layers by using computer software. The development of 3D printing was going to be more famous and commercial in the future to reduce the construction cost and labor demands, sustainability, and to the greenest way. Concrete is the mixture that consists of the ingredients of water, binder (cement) and aggregates (rock, sand, gravel). The productions of Portland cement in construction leads to the emissions of carbon dioxide (CO2) gas into the air. Waste material has been used as cement replacement in this research study to reduce carbon dioxide (CO2) gas emissions. This research study was going to evaluate the viability of concrete for 3D printing and printing emphasizing the impact on potential opportunities of this innovative industry. The behaviour of 3D concrete printing and potential of modified mortar in 3D concrete mix design by using Ground Granulated Blast-Furnace Slag (GGBS) is used to evaluate the potential uses of GGBS in concrete mixture for 3D building printing. This research study involved the review of concrete compressive strength and workability of 3D concrete printing with the control aspect during process manufacturing. The result shows that the mix design of 3D concrete printing with 30% and 40% produced concrete strength of 47.33MPa and 47.67MPa respectively. Furthermore, control aspect requirements of concrete for 3D printing were discussed in the field extrudability, flowability, buildability, strength between layers, aggregates, and water-cement ratio. Throughout this study, the manufactures of 3D building printing materials using environmentally friendly elements can contribute effectively create a sustainable environment automatically.