z-logo
open-access-imgOpen Access
Simulation of ozonolysis of volatile organic compounds: Effect on flue gas composition
Author(s) -
Marcus Lim,
Amanda LeaLangton
Publication year - 2021
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/1195/1/012012
Subject(s) - flue gas , chemistry , ozone , combustion , gas composition , ozonolysis , environmental chemistry , waste management , carbon dioxide , organic chemistry , physics , engineering , thermodynamics
This study shows that the reaction of ozone with various volatile organic compounds (VOC) yields different flue gas composition in terms of the carbon dioxide, oxygen and moisture contents. Steam production and thermal output requirements from a combustion system (i.e., a boiler) may dictate the range of operating conditions, such as the air to fuel mass flow rates. To improve the combustion efficiency in these operating conditions, low temperature plasmas have been used to ionize air and generate ozone as an oxidant for ozonolysis with the VOC. Therefore, this study simulates the reaction mechanism of the ozonolysis of VOC and the effect on the flue gas composition, which affects the combustion efficiency. Simulation results show that residual oxygen in the flue gas reduces, reducing the excess air. Thus, the corresponding efficiency loss through dry flue gas would be reduced. Literature data shows that emissions of alkanes, alkynes and alkenes per unit mass of solid fuel is evident for both coal and biomass, and thus ozonolysis of these VOC would reduce the excess air, improving the combustion efficiency.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here