
Experimental testing of 3D printed polymeric heat exchangers
Author(s) -
Luca Fontana,
Paolo Minetola,
Flaviana Calignano,
Luca Iuliano,
Mankirat Singh Khandpur,
Vito Stiuso
Publication year - 2021
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/1136/1/012047
Subject(s) - materials science , acrylonitrile butadiene styrene , 3d printing , composite material , heat exchanger , selective laser sintering , thermal , mechanical engineering , sintering , physics , meteorology , engineering
Unlike conventional manufacturing technologies, additive manufacturing and 3D printing empower engineers with much more design freedom. Heat exchangers with complex internal channels or lattice structures can be designed for layerwise manufacturing by maximizing the surface to volume ratio. Low-weight polymeric heat exchangers are employed in aviation and aerospace applications. For increasing the thermal performance of polymers, additives can be used such as graphene. In this study, a Grafylon filament is used for the production of a simple heat exchanger by 3D printing. The heat exchanger is composed of two external shells and an interior duct with a two-stage 45-degree bend. For watertight purposes, the duct is manufactured by selective laser sintering of polyamide powder. Two replicas of the shells are fabricated by 3D printing of Grafylon and acrylonitrile butadiene styrene (ABS) respectively. The thermal performance of the two materials is experimentally tested and compared also to numerical simulations. The results of the study show that the Grafylon filament provides enhanced thermal performance to 3D printed heat exchangers of polymeric material.