
Influence of an external applied AC magnetic field on the melt pool dynamics at high-power laser beam welding
Author(s) -
Ömer Üstündağ,
Nasim Bakir,
Andrey Gumenyuk,
Michael Rethmeier
Publication year - 2021
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/1135/1/012017
Subject(s) - materials science , welding , laser beam welding , magnetic field , weld pool , oscillation (cell signaling) , laser , beam (structure) , composite material , magnet , optics , arc welding , mechanical engineering , quantum mechanics , biology , gas tungsten arc welding , genetics , engineering , physics
The study deals with the determination of the influence of an externally applied oscillating magnetic field on the melt pool dynamics in high power laser beam and hybrid laser arc welding processes. An AC magnet was positioned under the workpiece which is generating an upward directed electromagnetic force to counteract the formation of the droplets. To visualise the melt flow characteristics, several experiments were carried out using a special technique with mild steel from S355J2 with a plate thickness of up to 20 mm and a quartz glass in butt configuration. The profile of the keyhole and the melt flow were recorded with a highspeed camera from the glass side. Additionally, the influence of the magnetic field orientation to the welding direction on the filler material dilution on laser hybrid welding was studied with variating oscillation frequency. The element distribution over the whole seam thickness was measured with X-ray fluorescence (XRF). The oscillation frequency demonstrated a great influence on the melt pool dynamics and the mixing of the elements of the filler wire. The highspeed recordings showed, under the influence of the magnetic field, that the melt is affected under strong vortex at the weld root, which also avoids the formation of droplets.