
Double-sided Hybrid Laser-Arc Welding of 25 mm S690QL High Strength Steel
Author(s) -
Carl D. Sorensen,
Anita Nissen,
C Brynning,
Jimmi Nielsen,
R. Schön,
R Malefijt,
Morten Kristiansen
Publication year - 2021
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/1135/1/012004
Subject(s) - welding , materials science , charpy impact test , high strength steel , toughness , metallurgy , laser beam welding , composite material , arc welding
Hybrid Laser-Arc Welding (HLAW) technique is an enabler for the next generation high efficiency we lding, bu t in dustrial ad option ha s be en li mited du e to pr ocess complexity. Previously documented challenges with root cracks posed by incomplete penetration were significant; h owever, t his w ork p resents s uccessful w eld s amples p repared f rom S 690QL steel welded from two sides with a 16 kW disc laser. Weld travel speeds below 500 mm/min and weld line energies between 1.7 and 1.9 kJ/mm gave sound weld samples, evaluated for yield strength, elongation, hardness and Charpy-V toughness according to DS/EN ISO 10025-6:2004+A1. The results shown here indicate a significant i ncrease i n t he overall e fficiency of but t wel ds in high strength steels and further cement the HLAW process for high strength steels. It is shown that the consecutive nature of the weld procedure led to non-negligible interpass temperatures for the second weld.