
Optimization of Electroless Ni-P, Ni-Cu-P and Ni-Cu-P-TiO2 Nanocomposite Coatings Microhardness using Taguchi Method
Author(s) -
Sama Ali,
Laith K. Abbas,
Abbas Kh. Hussein
Publication year - 2021
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/1094/1/012168
Subject(s) - taguchi methods , indentation hardness , materials science , nanocomposite , substrate (aquarium) , deposition (geology) , metallurgy , electroless deposition , coating , electroless plating , plating (geology) , layer (electronics) , chemical engineering , composite material , copper , microstructure , electroplating , oceanography , sediment , geophysics , engineering , biology , geology , paleontology
This paper studies the electroless (Ni-P) deposition which is used in different engineering applications due to their ability to modify and enhance the surface properties of the steel substrate. The electroless plating process was used to prepare (Ni-Cu-P), (Ni-P) and (Ni-Cu-P/Nano TiO2) alloys in this research. Deposition process parameters based on (L28) Taguchi orthogonal configuration with three process parameters, viz., stirring speed, temperature, time, are designed for optimum microhardness. Under the Taguchi series, the microhardness activity of electroless (Ni-P-TiO2) nanocomposite deposition was measured. The findings revealed that the integration of TiO2 into the coating allows micro-hardness cause an increase. Finally, optimum conditions were achieved as A2B1C2 (i.e. Speed of stirring = 1000 r.p.m, Temperature = 90 °C and Time = 70 min).