z-logo
open-access-imgOpen Access
Structural behavior of MRPC beams exposure to riverine simulated circumstances using GFRP and CFRP bars
Author(s) -
Abeer Hassan Wenas,
Wael Shahadha AbdulKareem,
Haider Amer Mushatat
Publication year - 2021
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/1076/1/012103
Subject(s) - fibre reinforced plastic , rebar , materials science , composite material , ultimate tensile strength , corrosion , structural engineering , flexural strength , reinforcement , engineering
Reinforced polymer bars could potentially be used with fiber as a strengthening technology in MRPC. The main objective of this paper is to study the influence development of the flexural behavior of MRPC beams after 120 days of virtual corrosion-exposure in riverine simulated circumstances using GFRP and CFRP bars. Nine beams were tested via a two-point loading method up to failure, 1200 mm long, (200x100mm) cross-section. The water/binder is chosen to be 0.14 by weight. Silica fume was replaced by 8% weight of cement. The dose of superplasticizer used to the total binder weight was 0.41 percent. Three types of flexural reinforcement ratios were used individually per each cross-section; GFRP, CFRP, and traditional steel rebar, with a nominal diameter of 10 mm. The compressive strength of MRPC is 80 MPa. The experimental evidence indicates that GFRP and CFRP bars used with MRPC have higher tensile strength and anti-corroded bars. Also, the load results indicate that CFRP bars are more efficient than GFRP bars and steel rebar. Finally, the behavior of MRPC beams neither GFRP and CFRP bars submerged in Tigris river water did not chemically affect. The author recommended replacing steel rebar with GFRP and CFRP bars to improved structural behavior.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here