
Dynamic Mechanical Analysis of 3D Printed PETG Material
Author(s) -
Ch. V. Subbarao,
Y. Srinivasa Reddy,
Vamsi Inturi,
M. Indra Reddy
Publication year - 2021
Publication title -
iop conference series. materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/1057/1/012031
Subject(s) - fabrication , materials science , fused filament fabrication , composite material , viscoelasticity , protein filament , layer (electronics) , cantilever , polymer , medicine , alternative medicine , pathology
3D printing technology through fused filament fabrication has found various industrial applications in the field of rapid manufacturing to fabricate prototypes and concept models. However, being the most popular technology, fused filament fabrication requires through understanding about the influence of the process parameters on resulting products. This investigation attempts to provide the terse behavior of the viscoelastic properties of fused filament fabrication processed with Poly Ethylene Terephthalate Glycol (PETG) samples considering the impact of fused filament fabrication process parameters. Dynamic mechanical analyzer is used to perform the dynamic mechanical analysis (DMA) and the dynamic response of fused filament fabrication PETG specimens is studied while they are subjected to dual cantilever loading under periodic stress. The fused filament fabrication process parameters such as, feed rate, layer thickness and infill density are considered. PETG parts are fabricated using 100% infill density at a feed rate of 50 mm/sec with three different layer thicknesses of 0.17 mm, 0.23 mm and 0.3 mm. DMA is performed with temperature ranging from room temperature to 130°C at five different frequency values of 1 Hz, 2 Hz, 5 Hz, 7 Hz & 10 Hz. The effect of process parameters of fused filament fabrication and frequencies on the viscoelastic properties of 3D printed PETG specimens is explored. The results reveled that, the storage module and loss module values are better for the specimens prepared with a layer thickness of 0.17 mm irrespective of the variation in the frequency values.