
Flow Disturbing to Enhance Heat Transfer Inside a Duct: an Experimental Study
Author(s) -
Zuheir Jawad Ibadi,
Hayder Azeez Neamah Diabil
Publication year - 2022
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/961/1/012005
Subject(s) - duct (anatomy) , heat transfer , mechanics , reynolds number , circulation (fluid dynamics) , airflow , materials science , environmental science , thermodynamics , meteorology , physics , turbulence , anatomy , medicine
In the present experimental work, the effect of air circulation on increasing heat transfer rates within the duct was studied. Three air circulation speeds are implemented: 2400, 1800, and 1200 rpm. In addition, the effect of the distance between the heat source and the location of the circulating fan on heat transfer rates was investigated using three different distances: 20, 40, and 60 cm. The Exhaust fan, placed at the outlet of the duct, changed its speed to three values: 2850, 2140, and 1425 revolutions per minute. The Reynolds range ranged from 65,000 to 175,000. The results showed that the best thermal performance is achieved when the exhaust fan speed, air circulation speed, and the distance between the heat source are 1425 rpm, 2400 rpm, and 60 cm, respectively.