z-logo
open-access-imgOpen Access
A Study of Cordierite Ceramics Synthesis From domestic kaolin
Author(s) -
Kim Tuan,
Dinh Huu Phong,
Minh Tam Lam,
Viet Thai Nguyen,
MinhVien Le,
Van Hoang Luan
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 26
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/947/1/012021
Subject(s) - cordierite , calcination , chlorine , differential thermal analysis , inorganic chemistry , thermogravimetric analysis , phase (matter) , materials science , ceramic , nuclear chemistry , mineralogy , chemistry , catalysis , metallurgy , diffraction , organic chemistry , physics , optics
This work aims to study the effect of chlorine ion on the formation of the cordierite phase (2MgO.2Al 2 O 3 .5SiO 2 ) from domestic kaolin at various calcined temperatures.. The cordierite phase was synthesized by a solid-state reaction technique from the mixture of kaolin, aluminum nitrate nonahydrate (Al(NO 3 ) 3 .9H 2 O), and magnesium chloride hexahydrate (MgCl 2 .6H 2 O) which was designed to the stoichiometric composition of cordierite in the absence and presence of chlorine ion (NH 4 Cl). The structure and formation of cordierite phase were characterized by X-ray diffraction (XRD) and thermogravimetric - differential thermal analysis (TG-DSC). Phase composition of samples calcined at various temperatures was calculated by using Match! (Version 3.7.0) software. It is noteworthy that the presence of chlorine ion in the mixture declined the formation temperature of cordierite by 50 °C. The cordierite phase was calculated to be 61.3 wt.% and 5.5 wt.% at 1150 °C for the present and absent chlorine ion, respectively. The presence of chlorine ion affected the cordierite formation rate and suppressed the temperature of formation. Cordierite phase could be obtained up to 89.6 wt.% at 1250 °C and 30 wt.% NH 4 Cl. This investigation found that cordierite ceramic could be synthesized from domestic kaolin at lower temperature by using NH4Cl additive.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here